
(Original project) conFFTi

ECE Capstone group project (3 members)

May 2021

(Extended project) Synthdesk

Individual project

November 2024

Conffti:

reimagining
digital
sound
synthesis

conFFTi is a digital musical synthesizer. It takes user input from a MIDI
keyboard and outputs the corresponding sound with analog wave
generation. It combines the benefits of traditional analog sound generation
and flexible digital reprogrammability.

Extending upon this previous project, I’m also presenting a concept
exploration that I conducted individually — Synthdesk. In the following
slides, I will first walk through the technical design behind conFFTi, then I
will go over how the extended project came to life.

MIDI keyboard DAC

3.5mm

audio
jack

MIDI breakout

FPGA

SystemVerilog

code

Input Detection Processing and Generation Output

the conFFTi system

The audio processing pipeline is the heart of our system. On top of the basic
oscillators that generate signals, we also added modules for aiding creative
compositions. Our synthesizer is capable of producing effects such as unison
detune, arpeggiation, fade in/fade out, and 8 unique timbres.

In order to modulate these effects, the FPGA takes 2 sources of user inputs:
MIDI keyboard presses, and operations directly on the FPGA board. The
main area of improvement for my extended concept study is to have a unified,
centralized control surface.

How it works

What is conFFTi?

conFFTi is a digital musical synthesizer implemented on a Field
Programmable Gate Array (FPGA). We used a commercial MIDI keyboard for
collecting inputs. The system accepts real-time inputs from MIDI keyboard,
generates digital sound signals in the FPGA, and outputs the data as audible
sound through a digital analog converter (DAC).

demo video:

https://www.youtube.com/watch?v=zdNPF3ZBTvo&ab_channel=MichelleChang

Look up table

31 05 A1

04 BA 04

21 05 CD

...

waveform oscillators

1
0

0

0

1

1 10 10101 decoded MIDI bytes

generated waveform

audible sound!

serial bits

deserializer & decoder

DAC

phase shifter duty cycle modulation

https://www.youtube.com/watch?v=zdNPF3ZBTvo&ab_channel=MichelleChang

Device Verification

User testing

Before we started implementaion, we lookup common limiattions and
baseline performance metrics of hardware and software synths. We lined out
the following requirements, which we revisited in the end�

� Latency:
� Pitch Deviation: . Exceeded the 10 cents requirement

for notes above C6.�
� Signal distortion: �
� Add programmable features: .�
� Industry standard output audio (44.1kHz, 2 channel, 16 bit): .

Achieve�

Achieved
Achieved

Achieved

Partially achieved

We accomplished our vision in creating a versatile system that brings creative
reprogrammabilities into traditional analog sound generation.

However, there is space for further improvement — as mentioned before, the
control for some of our programmable features is directly on the FPGA.

During user testing sessions, some reported that for those without prior
experience with this board, our project could be more intuitive if it had a
neater, more user-friendly interface.

Signal shape distortion

Demo: FPGA-based interface

Oscilloscope output for latency Pitch deviation across all octaves

Reimagining... SynthDesk

While revisiting this project, I felt inspired to imagine a product that would
transform our design into a cohesive, intuitive system. SynthDesk reimagines
the relationship between musical workspace and instrument. It solves a
critical pain point for electronic musicians: the often cluttered nature of music
production workspaces.

Think & Feels
Sees

Says

Does

Goals

Hears
Cluttered workspace

Constantly rearranging setup
Produces music daily

Ergonomic concerns

Have a comfortable workspace

the boosts efficiency

Complains about space

Equipment

recommendations

Tangled cables
“Need better workflow
organization”

Feels limited by the
small space

Created with Midjourney

Musicians can connect their instruments to the desk outlets to create a
FPGA-based synthesis system, all controlled through an intuitive interface�

� Embedded controls and outlets on the desktop on a slanted control pane�
� Embedded speaker�
� Compartment for housing the hardware: FPGA board, MIDI breakout, and

the DAC.

With the sketch, I created the rendered visual wih Midjourney.

A Concept Study: Integrating digital music production with furniture design

Building upon my experience with ConFFTi, this concept proposes integrating
synthesizer controls directly into a desk's surface, creating a unified system
that is suitable for compact workspaces. This concept exploration focuses on
defining the technical specifications for hardware integration and a reliable
control protocol.

MIDI Keyboard Zone

Control Interface Panel

(15° angle)

FPGA

Compartment

Control
Interface

Panel

Primary Control Zone

Ventilation

120cm

Technical breakdown

Conclusion

Microcontroller (MCU)

We need a microcontroller for intaking the control signals from the UI and
encoding it in a predefined protocol to be sent to the FPGA. We can leverage
the Arduino UNO board for its built in I2C protocol capability, adequate
memory size, and flexible reprogrammability.

The block diagram shows the hardware integration of how Synthdesk would
connect to the existing conFFTi system.

Block diagram

I2C protocol Arduino code snippetI2C protocol message visualization

While currently a theoretical study, this project demonstrates the feasibility of
embedding digital music interfaces into furniture, considering both the
technical requirements and user experience implications.

This intersection of physical and digital design spaces represents exactly the
kind of challenge I look forward to tackling through further education and
hands-on experience in the program.

I2C Protocol

We need to define a message structure to encode and decode accurate
information over serial data transmission.

The payload will be a fixed 6-byte message that includes control type,
control ID, value, timestamp, and modifier. We also need start and end
markers for precise timing placement, as well as a byte for length to ensure
robustness.

FPGA decoder

Based on the predefined protocol, the FPGA code needs to be updated with
an additional deserializing decoder module for translating the messages sent
from the microcontroller.

Fixed: 0x55

Fixed: 0xAA
timestamp

Usually fixed: 0x06
controlType
controlNum

value (high byte)
value (low byte)

modifiers

55
60

AA

MCU FPGA
1

0
0

0 1

